curl $UPSTASH_VECTOR_REST_URL/upsert-data \ -X POST \ -H "Authorization: Bearer $UPSTASH_VECTOR_REST_TOKEN" \ -d '[ { "id": "id-0", "data": "Upstash is a serverless data platform.", "metadata": { "link": "upstash.com" } }, { "id": "id-1", "data": "Upstash Vector is a serverless vector database." } ]'
Copy
Ask AI
{ "result": "Success"}
Endpoints
Upsert Data
Upserts (inserts or updates) the raw text data after embedding it.
POST
/
upsert-data
/
{namespace}
Copy
Ask AI
curl $UPSTASH_VECTOR_REST_URL/upsert-data \ -X POST \ -H "Authorization: Bearer $UPSTASH_VECTOR_REST_TOKEN" \ -d '[ { "id": "id-0", "data": "Upstash is a serverless data platform.", "metadata": { "link": "upstash.com" } }, { "id": "id-1", "data": "Upstash Vector is a serverless vector database." } ]'
Copy
Ask AI
{ "result": "Success"}
To use this endpoint, the index must be created with an embedding model.
Vector embedding of the raw text data will be upserted into the
default namespace by default.
You can use a different namespace by specifying it in the request path.